Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 4(11): 7800-7810, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34805780

RESUMEN

Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use. Concerns about their toxicity remain, and their administration is approved only under strict controls. Here, we report the synthesis and validation of a manganese-based CA, namely, Mn@HFn-RT. Manganese is an endogenous paramagnetic metal able to produce a positive contrast like gadolinium, but it is thought to result in less toxicity for the human body. Mn ions were efficiently loaded inside the shell of a recombinant H-ferritin (HFn), which is selectively recognized by the majority of human cancer cells through their transferrin receptor 1. Mn@HFn-RT was characterized, showing excellent colloidal stability, superior relaxivity, and a good safety profile. In vitro experiments confirmed the ability of Mn@HFn-RT to efficiently and selectively target breast cancer cells. In vivo, Mn@HFn-RT allowed the direct detection of tumors by positive contrast enhancement in a breast cancer murine model, using very low metal dosages and exhibiting rapid clearance after diagnosis. Hence, Mn@HFn-RT is proposed as a promising CA candidate to be developed for MRI.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Apoferritinas , Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Femenino , Gadolinio , Humanos , Imagen por Resonancia Magnética/métodos , Manganeso , Ratones
2.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809013

RESUMEN

The transferrin receptor 1 (TFR-1) has been found overexpressed in a broad range of solid tumors in humans and is, therefore, attracting great interest in clinical oncology for innovative targeted therapies, including nanomedicine. TFR-1 is recognized by H-Ferritin (HFn) and has been exploited to allow selective binding and drug internalization, applying an HFn nanocage loaded with doxorubicin (HFn(DOX)). In veterinary medicine, the role of TFR-1 in animal cancers remains poorly explored, and no attempts to use TFR-1 as a target for drug delivery have been conducted so far. In this study, we determined the TFR-1 expression both in feline mammary carcinomas during tumor progression, as compared to healthy tissue, and, in vitro, in a feline metastatic mammary cancer cell line. The efficacy of HFn(DOX) was compared to treatment with conventional doxorubicin in feline mammary cancer cells. Our results highlighted an increased TFR-1 expression associated with tumor metastatic progression, indicating a more aggressive behavior. Furthermore, it was demonstrated that the use of HFn(DOX) resulted in less proliferation of cells and increased apoptosis when compared to the drug alone. The results of this preliminary study suggest that the use of engineered bionanocages also offers unprecedented opportunities for selective targeted chemotherapy of solid tumors in veterinary medicine.

3.
Small ; 16(39): e2001450, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32856404

RESUMEN

The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc-linker@HFn for drug delivery to the tumor tissues.


Asunto(s)
Apoferritinas , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias , Apoferritinas/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
4.
J Colloid Interface Sci ; 519: 18-26, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29477896

RESUMEN

Nanoparticles are normally classified as "hard", mainly consisting of metal or metal oxide cores, or "soft", including polymer-based, liposomes and biomimetic nanoparticles. Soft nanoparticles have been studied in depth for drug formulation and therapeutic delivery applications, albeit hard nanoparticles may offer easier synthesis, smaller size and more effective tumor penetration. Among them, silica nanoparticles maintain excellent biocompatibility and biodegradability and can be finely adjusted in size and shape, easily produced in a large scale and functionalized or loaded with active molecules. To help filling the gap of a poor clinical translation of hard nanoparticles, we have designed and developed three different nonporous silica nanocarriers loading the chemotherapeutic doxorubicin within the core matrix, on the surface or both inside and outside, respectively. A comparative study was performed on drug loading and drug release, silica matrix degradation and nanodrug cytotoxic activity, highlighting unexpected correlation between the strategy adopted for drug incorporation and nanoparticle behavior in a physiological environment. This study offers a new insight on the impact of the choice of the prodrug nanoparticles on the kinetics and efficacy of drug delivery, which may encourage the scientific community in developing a new generation of drug delivery systems based on hard nanocarriers.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Liberación de Fármacos , Células HeLa , Humanos , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
5.
Biomacromolecules ; 18(10): 3318-3330, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28886247

RESUMEN

Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.


Asunto(s)
Antineoplásicos/farmacología , Apoferritinas/farmacología , Curcumina/farmacología , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/metabolismo , Transporte Biológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Oncotarget ; 8(5): 8383-8396, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28039473

RESUMEN

Chemotherapeutic treatment of breast cancer is based on maximum tolerated dose (MTD) approach. However, advanced stage tumors are not effectively eradicated by MTD owing to suboptimal drug targeting, onset of therapeutic resistance and neoangiogenesis. In contrast, "metronomic" chemotherapy is based on frequent drug administrations at lower doses, resulting in neovascularization inhibition and induction of tumor dormancy. Here we show the potential of H-ferritin (HFn)-mediated targeted nanodelivery of metronomic doxorubicin (DOX) in the setting of a highly aggressive and metastatic 4T1 breast cancer mouse model with DOX-inducible expression of chemoresistance. We find that HFn-DOX administered at repeated doses of 1.24 mg kg-1 strongly improves the antitumor potential of DOX chemotherapy arresting the tumor progression. We find that such a potent antitumor effect is attributable to multiple nanodrug actions beyond cell killing, including inhibition of tumor angiogenesis and avoidance of chemoresistance. Multiparametric assessment of heart tissues, including histology, ultrastructural analysis of tissue morphology, and measurement of markers of reactive oxygen species and hepatic/renal conditions, provided evidence that metronomic HFn-DOX allowed us to overcome cardiotoxicity. Our results suggest that HFn-DOX has tremendous potential for the development of "nanometronomic" chemotherapy toward safe and tailored oncological treatments.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos , Cardiopatías/prevención & control , Nanomedicina/métodos , Nanopartículas , Administración Metronómica , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidad , Apoferritinas/química , Apoferritinas/metabolismo , Disponibilidad Biológica , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cardiotoxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/toxicidad , Portadores de Fármacos , Composición de Medicamentos , Femenino , Cardiopatías/inducido químicamente , Ratones Endogámicos BALB C , Neovascularización Patológica , Distribución Tisular , Carga Tumoral/efectos de los fármacos
7.
J Vis Exp ; (114)2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27583454

RESUMEN

Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules. This study describes the development of a double-layer BBB, consisting of co-cultured commercially available primary rat brain microvascular endothelial cells and astrocytes. A multiparametric approach for the validation of the model, based on the measurement of the transendothelial electrical resistance and the apparent permeability of a high molecular weight dextran, is also described. As proof of concept for the employment of this BBB model to study the effect of different nanoformulations on the translocation of fluorescent molecules across the barrier, we describe the use of fluorescein isothiocyanate (FITC), loaded into ferritin nanoparticles. The ability of ferritins to improve the trans-BBB permeation of FITC was demonstrated by flux measurements and confocal microscopy analyses. The results suggest this is a useful system for validating nanosystems for delivery of drugs across the BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Ferritinas/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Fluoresceína , Pericitos/metabolismo , Ratas
8.
Pharmacol Res ; 111: 155-162, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27293049

RESUMEN

Tumor homing peptides (THPs) specific for a representative breast cancer cell line (MCF-7) were carefully selected basing on a phage-displayed peptide library freely available on the web, namely the "TumorHoPe: A Database of Tumor Homing Peptides". The selected THPs were synthesized and evaluated in terms of their affinity toward MCF-7 cells. Out of 5 tested THPs, 3 best-performing peptide sequences and 1 scrambled sequence were separately conjugated to spherical gold nanoparticles yielding stable nanoconjugates. THP nanoconjugates were examined for their ability to actively target MCF-7 cells in comparison to noncancerous 3T3-L1 fibroblast cells. These THP-gold nanoconjugates exhibited good selectivity and binding affinity by flow cytometry, and low cytotoxicity as assayed by cell death experiments. The uptake of targeted nanoconjugates by the breast cancer cells was confirmed by transmission electron microscopy analysis. This work demonstrates that it is possible to exploit the conjugation of short peptides selected from phage-displayed libraries to develop nanomaterials reliably endowed with tumor targeting potential irrespective of a specific knowledge of the target cell biology.


Asunto(s)
Neoplasias de la Mama/metabolismo , Técnicas de Visualización de Superficie Celular , Portadores de Fármacos , Oro/química , Nanopartículas del Metal , Nanoconjugados , Biblioteca de Péptidos , Péptidos/metabolismo , Células 3T3-L1 , Animales , Transporte Biológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/ultraestructura , Composición de Medicamentos , Femenino , Humanos , Células MCF-7 , Ratones , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Péptidos/química
9.
J Control Release ; 196: 184-96, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25312541

RESUMEN

A genetically engineered apoferritin variant consisting of 24 heavy-chain subunits (HFn) was produced to achieve a cumulative delivery of an antitumor drug, which exerts its cytotoxic action by targeting the DNA at the nucleus of human cancer cells with subcellular precision. The rationale of our approach is based on exploiting the natural arsenal of defense of cancer cells to stimulate them to recruit large amounts of HFn nanoparticles loaded with doxorubicin inside their nucleus in response to a DNA damage, which leads to a programmed cell death. After demonstrating the selectivity of HFn for representative cancer cells compared to healthy fibroblasts, doxorubicin-loaded HFn was used to treat the cancer cells. The results from confocal microscopy and DNA damage assays proved that loading of doxorubicin in HFn nanoparticles increased the nuclear delivery of the drug, thus enhancing doxorubicin efficacy. Doxorubicin-loaded HFn acts as a "Trojan Horse": HFn was internalized in cancer cells faster and more efficiently compared to free doxorubicin, then promptly translocated into the nucleus following the DNA damage caused by the partial release in the cytoplasm of encapsulated doxorubicin. This self-triggered translocation mechanism allowed the drug to be directly released in the nuclear compartment, where it exerted its toxic action. This approach was reliable and straightforward providing an antiproliferative effect with high reproducibility. The particular self-assembling nature of HFn nanocage makes it a versatile and tunable nanovector for a broad range of molecules suitable both for detection and treatment of cancer cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Apoferritinas/administración & dosificación , Núcleo Celular/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Nanoestructuras/química , Antineoplásicos/química , Apoferritinas/química , Línea Celular Tumoral , Daño del ADN , ADN Complementario/administración & dosificación , ADN Complementario/farmacología , Escherichia coli/metabolismo , Células HeLa , Humanos , Translocación Genética
10.
Adv Healthc Mater ; 3(7): 957-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24443410

RESUMEN

Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.


Asunto(s)
Coloides , Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Línea Celular , Humanos , Mamíferos , Modelos Biológicos , Nanomedicina
11.
ACS Nano ; 7(7): 6092-102, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23758591

RESUMEN

A great challenge in nanodiagnostics is the identification of new strategies aimed to optimize the detection of primary breast cancer and metastases by the employment of target-specific nanodevices. At present, controversial proof has been provided on the actual importance of surface functionalization of nanoparticles to improve their in vivo localization at the tumor. In the present paper, we have designed and developed a set of multifunctional nanoprobes, modified with three different variants of a model antibody, that is, the humanized monocolonal antibody trastuzumab (TZ), able to selectively target the HER2 receptor in breast cancer cells. Assuming that nanoparticle accumulation in target cells is strictly related to their physicochemical properties, we performed a comparative study of internalization, trafficking, and metabolism in MCF7 cells of multifunctional nanoparticles (MNP) functionalized with TZ or with alternative lower molecular weight variants of the monoclonal antibody, such as the half-chain (HC) and scFv fragments (scFv). Hence, to estimate to what extent the structure of the surface bioligand affects the targeting efficiency of the nanoconjugate, three cognate nanoconstructs were designed, in which only the antibody form was differentiated while the nanoparticle core was maintained unvaried, consisting of an iron oxide spherical nanocrystal coated with an amphiphilic polymer shell. In vitro, in vivo, and ex vivo analyses of the targeting efficiency and of the intracellular fate of MNP-TZ, MNP-HC, and MNP-scFv suggested that the highly stable MNP-HC is the best candidate for application in breast cancer detection. Our results provided evidence that, in this case, active targeting plays an important role in determining the biological activity of the nanoconstruct.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Membrana Celular/química , Membrana Celular/inmunología , Nanocápsulas/química , Humanos , Células MCF-7 , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...